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Abstract 

The University of Delaware's "DARWIN" HPC cluster1 required the creation of a system for the 

management of resource allocations.  Each XSEDE (now ACCESS2) resource provider (RP) is 

responsible for implementing this infrastructure locally.  Design mandates included scalable, 

tight integration with the Slurm job scheduler; a containerized client-server implementation of 

the data storage and access; user-facing allocation query tools; and integration with the 

XSEDE/ACCESS accounting reporting workflow.  The resulting solution has been in continuous 

operation since June of 2021. 

Introduction 

Slurm3 is an open source, fault-tolerant, and highly scalable cluster management and job 

scheduling system for large and small Linux clusters.  Slurm stands apart from many other 

job-scheduling systems in its being an open source software product.  With full access to the 

source code, consumers at all levels are free to analyze the code and make changes or 

additions.  When presented with site- or system-specific conditions on job scheduling, this 

flexibility can often set Slurm apart from commercial products. 

Prior to the deployment of the University of Delaware's "Caviness" HPC cluster4 a licensed 

commercial scheduler was employed.  Though both the commercial product and Slurm have 

advantages and disadvantages in their functionality, the capability to elucidate bugs and apply 

our own patches to Slurm as well as alter functionality through plugins and source changes 

proved most lucrative.  Eliminating the annual license fees associated with the commercial 

4 https://docs.hpc.udel.edu/abstract/caviness/caviness 
3 https://www.schedmd.com 
2 https://access-ci.org 
1 https://docs.hpc.udel.edu/abstract/darwin/darwin 

 



product and our being able to contribute knowledge and code back to the Slurm developers and 

community was also a major factor in our adoption of Slurm. 

In 2019, the existing HPC systems model matched faculty and departmental hardware 

investment (stakeholders) with IT infrastructural investment in larger-scale HPC systems.  

Ownership of specific resources was reflected in preferential access to those resources, and 

opportunistic access to all idle computational resources — regardless of investment level — was 

a value-added benefit at scale.  The "DARWIN" HPC cluster was purchased with an NSF MRI 

grant and was to facilitate access to HPC resources locally, regionally, and nationally.  

Interested parties would submit requests for resource allocations on the system:  a major 

departure from the stakeholder-oriented model previously employed. 

An allocation was defined to encompass: 

●​ a single category determining resource limit range and purpose/applicability 

●​ a single resource type:  traditional CPU, GPGPU coprocessor, storage 

●​ a time period (usually 1 year) 

An allocation maintains a balance of some arbitrary unit of computational work with credits and 

debits made against it.  The parity of this with the XSEDE/ACCESS definition of an allocation 

meant that a single implementation could handle allocations made by both University and 

XSEDE/ACCESS committees. 

Design Goals 

End-user and sysadmin experience with the Slurm job scheduler on the "Caviness" cluster was 

overwhelmingly positive, so the "DARWIN" cluster would carry forward that choice.  Any 

changes in functionality necessary to implement the allocations system would hopefully be 

realizable using the various plugin APIs provided to extend Slurm:  alterations to the base 

source code could hopefully be avoided. 

A foundational design tenet of an allocations system is the granularity at which resource 

consumption is resolved.  The absolute ideal would be for the job scheduler itself to handle the 

accounting, but if that facility is absent or deficient it must be implemented externally.  Perhaps 

the simplest external solution is to periodically aggregate resource usage over the last 

unaccounted interval of time and debit it from the allocation balance; an allocation carrying a 

zero or negative balance cannot execute work in subsequent periods.  One major issue with this 
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mechanism is that an allocation could incur a negative balance during the unaccounted time 

interval, which equates with using resources not granted.  The shorter the interval between 

accounting runs, the smaller the magnitude of impact possible.  As the interval duration 

approaches zero, though, the computational burden increases significantly.  The situation can 

be improved by making one mandate:  in addition to core counts, GPU counts, and memory 

limits, every job must supply a finite time limit at submission.  From these data a maximum 

allocation pre-debit is calculable for each job.  If the pre-debit does not yield a negative balance, 

the job may execute; otherwise, the job is denied.  When the job completes execution, the real 

amount of elapsed time is used to calculate the actual debit to the allocation:  if the actual debit 

is less than the pre-debit, the unused quantity is effectively credited back to the allocation. 

It is important to define how the system associates a job with the allocation against which it 

should be billed.  The Slurm job-scheduling environment on our HPC clusters requires jobs be 

submitted from a shell running under a workgroup with access to the system.  A workgroup is an 

abstraction on top of a Unix group (with gid name and number) and a Slurm account (of the 

same name).  The gid of the submitting process is associated with the job record in Slurm and 

processes associated with the job will execute with that gid.  If the user does not supply an 

explicit Slurm account at job submission, the workgroup name is used.  Slurm job submission 

and CLI filter plugins ensure these policies are enforced on each job.  Since every job will thus 

have a workgroup associated with it, tying allocations to workgroups provides an easy link 

between a job and its billing target.  Since an allocation is defined with regard to a specific 

resource type, the Slurm partition for the job determines the resource type:  jobs running in 

GPGPU-oriented partitions bill against a GPGPU allocation, traditional CPU-oriented partitions 

bill against a CPU allocation.  So the workgroup and partition form a complete association with 

an allocation as long as a single matching allocation exists during any instant in time.  These 

qualifications provide a uniqueness constraint on allocations:  for any combination of workgroup, 

resource type, and time period, there can be no other allocation with the same workgroup and 

resource type with an overlapping time period.  Thus, the job's workgroup and partition in 

concert with the current date and time determine what allocation will be billed.  It is important to 

note that a job whose execution period straddles two distinct allocation periods will incur a 

pre-debit on the earlier of the two allocations, so the actual debit must be against the same. 
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Service Units 

Each resource type must have a billable unit of work defined in arbitrary service units.  For 

CPU-oriented resources an amount of time on a single CPU core is used.  The total available 

SU for a CPU-oriented resource is the total number of CPU cores multiplied by a period of time; 

for example, annual CPU SU in core•hours is the number of cores times 8760 hours.  For 

GPU-oriented resources, the formula instead uses total GPGPU devices (since the system is 

not configured to grant access to subsets of those devices' resources).  Allocations committees 

grant credits in terms of these SU definitions and at the granularity of an hour of time. 

The job scheduler grants resource usage at the resolution of one second.  Consideration must 

be given with respect to how to resolve, for example, 55 core•seconds of CPU usage against an 

allocation made in core•hours:  is the usage rounded-up or rounded down, or should 

floating-point values be used rather than integers?  For the sake of avoiding issues with 

imprecise zero, integer values are preferable.  The job cited above would be billed either as 1 

core•hour or 0 core•hour, which either severely penalizes short jobs or rewards them unfairly.  

DARWIN is a general-purpose cluster and not specifically designed for high-throughput 

scenarios, so billing by the core•minute with round-up of the scheduler's tracked core•second 

usage seemed the most appropriate compromise.  While allocations committees will issue 

credits in an SU defined in terms of hours, internally the system will do its accounting in terms of 

minutes. 

In order to make use of the CPU or GPU resources in any node the job must have RAM 

available to it, as well.  RAM usage is not accounted for in the SU definition, but it does have a 

strong relationship with availability of the SU resources:  a job that requests a single CPU core 

and all of the available RAM in a node blocks other jobs from running on the unused cores.  In 

Slurm this issue is resolved by switching the billing formula from being the sum of weighted 

accounted resources to being the maximum weighted resource (by adding MAX_TRES to the 

PriorityFlags).  Billing weights are assigned such that each CPU (or GPU) equates with a 

fraction of available RAM.  For a 64 core node with 128 GiB of available RAM, the weights 

would be 1.0 and 0.5, respectively, and a job requesting (1 core, 64 GiB) would be billed exactly 

the same as a job requesting (32 core, 1 GiB) since both effectively consume half of the node's 

resources.  In addition, each GPU must also equate with a fraction of CPU cores: for 64 cores, 

128 GiB RAM, and 4 GPGPU devices, the weights would be 0.0625, 0.03125, and 1.0, 

respectively. 
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This design does have implications on the partitions that must be present on DARWIN. 

Partitions 

Billing formulae are set independently for each partition in Slurm.  As mentioned above, we 

already must restrict partitions to encompass a single allocatable resource type (CPU or GPU); 

to properly equate RAM with CPU core count, all nodes in a partition must also have equal 

RAM, CPU core, and GPGPU device counts.  These criteria led to the creation of eight distinct 

partitions:  4 CPU partitions of differing RAM footprint and 4 GPU partitions of differing GPGPU 

device kind. 

Implementation 

The collection of software associated with implementing the DARWIN allocation system has 

affectionately been named the Hermes Allocation Data Manager.  Hermes is in reference to the 

accountant of the same name in the Futurama television show.  The acronym should be 

pronounced "hate 'em" in deference to how much sysadmins enjoy doing the tasks it performs. 

Database 

A PostgreSQL5 database was used to hold the allocation data.  The database server is run 

inside a Singularity container.  An external directory is bind-mounted into the container at the 

expected PGDATA path. 

Each workgroup (project in the XSEDE/ACCESS parlance) is represented by a record in the 

"projects" table: 

KEY TYPE DESCRIPTION 

project_id integer, primary key additional integer id orthogonal to Unix gid number; used for 
Lustre quotas, foreign key references in this database 

gname text the name of the workgroup's Unix group 

gid integer the gid number of the Unix group 

account text the Slurm account name associated with the workgroup 

Schema 1:  "projects" table 

Projects can have any number of current and historic allocations present in the database: 

5 https://www.postgresql.org 
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KEY TYPE DESCRIPTION 

allocation_id integer, primary key for foreign key references in this database 

project_id integer -> 
projects.project_id 

referential link to a "projects" tuple 

category text the allocation category 

resource text the resource type (CPU or GPU) 

start_date timestamp the date on which the allocation becomes active 

end_date timestamp the date on which the allocation expires 

Schema 2: "allocations" table 

All transactions against an allocation balance share some common properties:  the allocation to 

which they apply, the SU amount, and optional comment text.  A base table is used to describe 

these fields: 

KEY TYPE DESCRIPTION 

activity_id integer, primary key for foreign key references in this database 

allocation_id integer -> 
allocations.allocation_id 

referential link to an "allocations" tuple 

amount integer an SU count 

comments text optional text describing the transaction 

Schema 3: "activity" table 

A credit to an allocation requires no additional fields, so the "credits" table simply inherits the 

"activity" table. 

A pre-debit to an allocation builds on the "activity" table it inherits: 

KEY TYPE DESCRIPTION 

job_id integer job id assigned by Slurm 

status text status of Slurm job:  executing, completed 

owner_uid integer Unix uid number associated with the job 

Schema 4: "predebits" table 
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Once a pre-debit is resolved it moves into the "debits" table as an aggregate by owner_uid (with 

the amount field being the total SU debits associated with that user): 

KEY TYPE DESCRIPTION 

owner_uid integer Unix uid number associated with the job 

Schema 5: "debits" table 

Finally, all submitted jobs that fail due to an insufficient allocation balance are moved from the 

"predebits" table to the "failures" table: 

KEY TYPE DESCRIPTION 

job_id integer job id assigned by Slurm 

owner_uid integer Unix uid number associated with the job 

Schema 6: "failures" table 

The schema includes several views, most notably a "balances" view that sums across all 

debit/pre-debit/credit activities for each distinct allocation. 

The full schema makes extensive use of stored procedures to validate tuples when they are 

inserted and updated (to prevent introduction of overlapping allocations, for example).  One 

particular difficulty that was encountered during implementation and testing was serializing 

access to the "activity" cluster of tables.  Since two separate sessions have shared access to 

query the table, two jobs requesting 20 SU against an allocation with a balance of +30 SU could 

both succeed before one of them manages to commit its pre-debit.  This could lead to (possibly 

extensive) overdraft on an allocation.  Initially an SQL exclusive access lock was acquired by 

the procedure prior to querying the "balances" view and dropped on exit from the procedure per 

the SQL standard.  In testing this worked fine, but at scale we observed cyclic contention for the 

lock among multiple sessions that would effectively deadlock the PostgreSQL server.  The 

procedure was altered to use PostgreSQL advisory locks (similar to POSIX locks) which can be 

acquired/dropped explicitly in the procedure.  With advisory locks, no such contention or 

deadlock has been observed at scale.  We eventually extended use of the advisory lock to all 

stored procedures that modify the distribution of SUs among the tables to avoid under- and 

over-counting in overlapping calls to those procedures. 
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Web API 

A RESTful interface to the PostgreSQL database was created using Python6 and the Flask7 

module.  URL paths are used to query projects, allocations, and activity records and (in some 

cases for some remote users) alter those records.  There are three levels of privilege present: 

●​ superuser:  create, read, update, and delete all records; run as alternative user 

●​ admin:  read all records; run as alternative user 

●​ standard:  read records associated with projects to which the user is a member 

Since the cluster already uses the MUNGE daemon8 for credentialed signing and authentication 

of Slurm RPCs, it makes sense to reuse that facility for authentication in this context, as well.  

Every HTTP request must have a custom header providing a MUNGE signature that the Python 

code can verify; if decoded and verified with MUNGE, the sender uid on the signature is the 

user associated with the HTTP request.  Membership in the superuser and admin role is 

configured directly in the Python application. 

URL Path Hierarchy 

The REST API is documented in the source code, currently posted online at 

https://gitlab.com/udel-itrci/hadm/.  The URL paths used in the web API are constructed with the 

target entity or information as the first component:  /project, /alloc, /job, /failure.  A GET request 

to each path yields a list of objects filtered by the requesting user:  all objects are visible to 

users with the superuser or admin roles, while regular users are limited to objects associated 

with their user or group ids.  Each returned object has a distinct numerical identifier used to 

interact with it, e.g. /project/129.  In most cases, GET requests can include query parameters 

(e.g. gid=<gid-#>) to limit the scope of the search. 

The sproject utility 

To simplify use of the WebAPI for users and staff, a Python utility was written that generates 

REST queries from CLI arguments and displays the resulting JSON in a tabular format.  Some 

filtering, sorting, and collation outside the WebAPI's inherent capabilities is present (e.g. show 

only currently-active allocations). 

8 https://dun.github.io/munge/ 
7 https://flask.palletsprojects.com/en/stable/ 
6 https://www.python.org 
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Slurm Plug-ins 

A variety of Slurm plug-ins were created to ensure all pre-conditions necessary for allocation 

processing are met. 

CLI filter 

A CLI filter plug-in9 validates job parameters on the submission node prior to the job record's 

being sent to the Slurm controller daemon (slurmctld).  The DARWIN plugin: 

●​ sets the "account" parameter to the Unix group name if absent 

●​ checks that the "account" parameter matches the Unix group name 

●​ for short-term allocations, forces the "partition" and "reservation" parameters to match 

the Unix group name 

●​ ensures one and only one "partition" parameter has been provided 

●​ advise the user that "--gpus" should be used and not "--gres=gpu" 

●​ check that the subtype provided with "--gpus" and the selected partition embody a 

consistent GPGPU device type 

●​ overwrite any "qos" parameter provided by the user with our desired "qos" 

If any errors are present in the job submission, the CLI filter plug-in can notify the user before 

the job has consumed a job id and any processing time in slurmctld.  Error messages produced 

by the plug-in provide guidance on remedying the issue preventing submission. 

Job submission 

A job submission plugin10 runs in slurmctld and enforces the same checks as the CLI filter 

plugin.  In addition: 

●​ if no "--time-min" was provided, set it to the job's time limit 

●​ if no memory limit parameter was provided, use a default value per CPU 

The backfill scheduler always looks to fit jobs into available resource time slots.  This can go 

awry in some cases if there is no minimum time provided for the job:  the requested walltime 

effectively ranges from 0 up to the job time limit and any amount of time on the required 

resource footprint is a match.  Users who do not explicitly communicate a "--time-min" value in a 

submission are assumed to want the full time limit and nothing less. 

10 https://slurm.schedmd.com/job_submit_plugins.html 
9 https://slurm.schedmd.com/cli_filter_plugins.html 
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The job does not yet have a job id assigned at this stage. 

PrEp 

A Prolog-Epilog (PrEp) plug-in11 runs within those contexts of job dispatch in slurmctld.  When 

slurmctld selects a pending job for execution, the prolog function is executed; when slurmctld is 

told the job has completed execution, the epilog function is executed. 

Web API queries will be used to interact with the database, so the prolog/epilog steps will 

necessarily wait on a response from the server.  A straightforward procedural model for these 

queries will introduce a bottleneck in the slurmctld job processing pipeline:  each job will block 

while a response from the server is pending.  If the response is a timeout or other inconclusive 

failure, the web API query will need to be repeated, further delaying subsequent job 

completions.  Slurm does build-in an asynchronous completion model for the PrEp plugin, 

whereby the prolog or epilog can use callbacks to update and progress the job records 

asynchronously.  Rather than spawning each prolog or epilog web API procedure in a separate 

thread, a pool of threaded query handlers is employed.  The pool has a minimum and maximum 

number of worker threads and can expand/contract based on wait times for queued requests 

from the PrEp plug-in.  On shutdown, any pending queries are serialized to disk, and on startup 

any queries present on disk are deserialized into the work queue. 

In the prolog function, Slurm has already calculated (based on partition and requested resource 

levels) the projected billable SUs for the job.  The job also has a job id assigned to it, so all 

information necessary to introduce a pre-debit is present: 

●​ job_id 

●​ owner_uid 

●​ amount 

●​ resource type (from partition) 

●​ project (from account/group name) 

A web API query for pre-debit is created and submitted asynchronously to the work queue.  

When the query completes, the job will be set for acceptance or rejection and progressed to its 

next state. 

11 https://slurm.schedmd.com/prep_plugins.html 
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In the epilog function, Slurm has updated the job record's billable SUs to match with the actual 

wall time consumed by the job.  If the job state indicates that it ended due to node failure, then 

we do not bill for the job:  the SU usage is set to zero.  A web API query for completion is 

created and submitted asynchronously to the work queue.  When the query completes the job is 

progressed to its next state. 

Site factor 

A site factor plugin12 introduces a value external to Slurm's own metrics into the calculation of 

job–scheduling priorities.  In the context of an allocation-based system, one biasing factor that 

could be exploited to improve user experience is the magnitude of remaining credit and the time 

until expiration of the allocation.  For the sake of fulfilling consumption of allocated credit, jobs 

associated with an allocation nearing its expiration must run sooner than jobs with a later 

expiration date.  In concert with that prioritization factor, the magnitude of remaining credit 

should influence priority:  with similar expiration dates, an allocation with just 5% remaining 

should receive lower priority than one with 95% remaining. 

It is important to note that a site factor plugin has not been implemented on DARWIN:  it is a 

useful feature that could be exploited in the future. 

Calculation of the two factors for active allocations indexed by  follows the formulae: 𝑖

 𝑓
𝑐𝑟𝑒𝑑𝑖𝑡,𝑖

= 1 −
𝐶

𝑢𝑠𝑒𝑑,𝑖

𝐶
𝑎𝑙𝑙𝑜𝑐,𝑖

 𝑓
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙,𝑖

= 1 −
∆𝑡

𝑒𝑥𝑝𝑖𝑟𝑒,𝑖

𝑚𝑎𝑥(∆𝑡
𝑒𝑥𝑝𝑖𝑟𝑒,1

,…,∆𝑡
𝑒𝑥𝑝𝑖𝑟𝑒,𝑁

)

where  and  are the credits consumed and granted to an allocation, respectively; 𝐶
𝑢𝑠𝑒𝑑,𝑖

𝐶
𝑎𝑙𝑙𝑜𝑐,𝑖

 is the time interval until expiration of an allocation; and  is the ∆𝑡
𝑒𝑥𝑝𝑖𝑟𝑒,𝑖

𝑚𝑎𝑥(∆𝑡
𝑒𝑥𝑝𝑖𝑟𝑒,1

, …, ∆𝑡
𝑒𝑥𝑝𝑖𝑟𝑒,𝑁

)

longest time interval until expiration over all allocations.  These factors are in the closed interval 

 for all allocations.  Both formulae are linear; alternative formulations that bias the behavior [0, 1]

are permissible.  Two examples are presented here. 

12 https://slurm.schedmd.com/site_factor.html 
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Power rule 

Rather than using the fractional factors directly the value can be exponentiated:  for example, 

squaring the value biases higher values of the fraction over lower values.  In other words, for 

 between one allocation and another with twice the unused credits the latter is given four 𝑓
𝑐𝑟𝑒𝑑𝑖𝑡,𝑖

times the priority over the former.  The values still fall within the closed range . [0, 1]

In one form, the product of the two fractional factors is raised to the power  to yield the site 𝑁

factor.  Two example contour plots appear in Figure 1: 

​  

​ Figure 1:  Two example power rule formulae for the site factor. 

By construction this site factor will always be symmetric; the same weight is given to differences 

in temporal factor as is given to differences in credit factor.  It is likely to be beneficial to bias the 

weighting of one factor versus the other; for example, making the site factor grow more quickly 

with respect to impending expiration. This asymmetry is affected by making the site factor, , the ς

product of the fractional factors each raised to a distinct exponent,  and . 𝑁
𝑡

𝑁
𝐶

​  ς(𝑓
𝑐,𝑖

 , 𝑓
𝑡,𝑖

)
𝑁

𝑐
,𝑁

𝑡

=  𝑓
𝑐,𝑖

𝑁
𝑐 𝑓

𝑡,𝑖

𝑁
𝑡

The choice of parameters in Figure 2 uses the square root to stretch the site factor response to 

 and bias the response to   to favor allocations closer to their expiration date. 𝑓
𝑐𝑟𝑒𝑑𝑖𝑡,𝑖

𝑓
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙,𝑖
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​  

​ Figure 2:  Asymmetric power rule formula. 

In terms of implementation in a site factor plug-in, the power rule would require two adjustable 

parameters.  The code could be as simple as two calls to the C pow() function, or as complex as 

recognizing an exponent's being an integer that could be optimally implemented as a looped 

multiplication (e.g. a single floating-point multiplication for  or a NOOP for ). 𝑁 = 2 𝑁 = 1

Sigmoid 

A sigmoid function (or logistics function) can be defined as 

​  𝑆(𝑥)
𝑙,𝑥

0

 =  𝐴

1 + 𝑒
−𝑙 (𝑥−𝑥

0
)
 

 −  𝐵

where the parameters  and  determine the transition rate and midpoint of the curve.  For our 𝑙 𝑥
0

purposes there exist two conditions that must be satisfied 

​  𝑆(0)
𝑙,𝑥

0

=  0 ;  𝑆(1)
𝑙,𝑥

0

  =  1

for the fractional values to map to the allowable range .  These two equations can be [0, 1]

solved for  and  and the function rewritten as: 𝐴 𝐵

​  𝑆(𝑥)
𝑙,𝑥

0

= (𝑒𝑙 𝑥−1)(𝑒𝑙+𝑒
𝑙 𝑥

0 )

(𝑒𝑙−1)(𝑒𝑙 𝑥+𝑒
𝑙 𝑥

𝑜 )

The behavior of the function under variation of the two parameters is illustrated in Figures 3 and 

4: 
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Figure 3:  Variation of parameter  𝑙

 

 

Figure 4:  Variation of parameter  𝑥
0

A value of  approximates a linear function of unit slope and  a linear function of zero 𝑙 = 1 𝑙 = 0

slope.  Note that as the magnitude of parameter  increases, the sigmoid more closely mimics a 𝑙

step function that transitions at : 𝑥
0

​  

​ Figure 5:  Sigmoid as a step function 

A site factor defined as the composition of two sigmoid functions is generally asymmetric and 

requires four parameters. 

 ς(𝑓
𝑐,𝑖

 , 𝑓
𝑡,𝑖

)
𝑙

𝑐
,𝑙

𝑡
,𝑥

0,𝑐
,𝑥

0,𝑡

=  𝑆(𝑓
𝑐,𝑖

)
𝑙

𝑐
,𝑥

0,𝑐

 𝑆(𝑓
𝑡,𝑖

)
𝑙

𝑡
,𝑥

0,𝑡
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Symmetry is a special case realized by reduction to only two adjustable parameters (  and 𝑙
𝑐

= 𝑙
𝑡

).  Consider a parameterization that heavily favors allocations nearing their expiration 𝑥
0,𝑐

= 𝑥
0,𝑡

in concert with a wide gradient of prioritization with respect to level of unused credit (Figure 6): 

​  

​ Figure 6:  Sigmoid site factor with  ,  ,  ,  𝑙
𝑐

= 5 𝑙
𝑡

= 50 𝑥
0,𝑐

= 0. 25 𝑥
0,𝑡

= 0. 75

Until an allocation reaches 75% of its allocation period, the degree of credit remaining plays no 

role in site factor prioritization. 

Summary 

DARWIN's HADM facility has been in operation for 1428 days as of the writing of this document.  

In that time it has encompassed or processed: 

●​ 321 unique projects/workgroups, 216 of which are XSEDE/ACCESS 

●​ 714 unique allocations 

●​ 5,525,365 user jobs 

●​ 45,289,179 CPU•hours (74% avg. utilization) 

●​ 117,214 GPU•hours (57% avg. utilization) 

The Slurm PrEp plugin and HADM WebAPI daemon have operated reliably with zero downtime.  

Staff and users alike have benefitted from the sproject utility to easily manage allocations:  

checking balances, noting usage by user, and explaining job failures due to insufficient credits. 

HADM presents a feature-rich, well-tested option in the implementation of future 

allocations-based systems at the University.  With a non-trivial amount of work the database 

backend could be modified, for example to use a NoSQL system like MongoDB or Redis; 
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pivoting to MariaDB/MySQL or another SQL system would also be permissible, although they 

typically lack parity with the flexibility of PostgreSQL.  Though very few user complaints have 

been voiced with regard to the "fairness" of scheduling priorities, the influence of remaining 

balance and time could effect an improvement via the site factor. 

16 


	HADM:  Integration of Resource Allocations in Slurm 
	Author Affiliations 
	Abstract 
	Introduction 
	Design Goals 
	Service Units 
	Partitions 

	Implementation 
	Database 
	Web API 
	URL Path Hierarchy 
	The sproject utility 

	Slurm Plug-ins 
	CLI filter 
	Job submission 
	PrEp 
	Site factor 
	Power rule 
	Sigmoid 



	Summary 


